By Topic

Extending two non-parametric transforms for FPGA based stereo matching using bayer filtered cameras

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kristian Ambrosch ; Austrian Research Centers GmbH - ARC, A-1220 Vienna, Austria ; Martin Humenberger ; Wilfried Kubinger ; Andreas Steininger

Stereo vision has become a very interesting sensing technology for robotic platforms. It offers various advantages, but the drawback is a very high algorithmic effort. Due to the aptitude of certain non-parametric techniques for field programmable gate array (FPGA) based stereo matching, these algorithms can be implemented in highly parallel design while offering adequate real-time behavior. To enable the provision of color images by the stereo sensor for object classification tasks, we propose a technique for extending the rank and the census transform for increased robustness on gray scaled Bayer patterned images. Furthermore, we analyze the extended and the original algorithmspsila behavior on image sets created in controlled environments as well as on real world images and compare their resource usage when implemented on our FPGA based stereo matching architecture.

Published in:

Computer Vision and Pattern Recognition Workshops, 2008. CVPRW '08. IEEE Computer Society Conference on

Date of Conference:

23-28 June 2008