By Topic

Visual detection of lintel-occluded doors from a single image

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zhichao Chen ; Dept. of Electr. & Comput. Eng., Clemson Univ., Clemson, SC ; Birchfield, S.T.

Doors are important landmarks for indoor mobile robot navigation. Most existing algorithms for door detection use range sensors or work in limited environments because of restricted assumptions about color, pose, or lighting. We present a vision-based door detection algorithm that achieves robustness by utilizing a variety of features, including color, texture, and intensity edges. We introduce two novel geometric features that increase performance significantly: concavity and bottom-edge intensity profile. The features are combined using Adaboost to ensure optimal linear weighting. On a large database of images collected in a wide variety of conditions, the algorithm achieves more than 90% detection with a low false positive rate. Additional experiments demonstrate the suitability of the algorithm for real-time applications using a mobile robot equipped with an off-the-shelf camera and laptop.

Published in:

Computer Vision and Pattern Recognition Workshops, 2008. CVPRW '08. IEEE Computer Society Conference on

Date of Conference:

23-28 June 2008