Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Evaluating the quality of super-resolved images for face recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xiaoli Zhou ; Center for Res. in Intell. Syst., Univ. of California at Riverside, Riverside, CA ; Bhanu, B.

The widespread use of super-resolution methods, in a variety of applications such as surveillance has led to an increasing need for or quality assessment measures. The current quality measures aim to compare different fusion methods by assessing the quality of the fused images. They consider the information transferred between the super-resolved image and input images only. In this paper, we propose an objective quality evaluation algorithm for super-resolved images, which focuses on evaluating the quality of super-resolved images that are constructed from different conditions of input images. The proposed quality evaluation method combines both the relationship between the super-resolved image and the input images, and the relationship between the input images. Using the proposed measure, the quality of the super-resolved face images constructed from videos are evaluated under different conditions, including the variation of pose, lighting, facial expressions and the number of input images.

Published in:

Computer Vision and Pattern Recognition Workshops, 2008. CVPRW '08. IEEE Computer Society Conference on

Date of Conference:

23-28 June 2008