By Topic

HMM-based geometric signatures for compact 3D face representation and matching

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

3D face recognition(s) systems improve current 2D image-based approaches, but in general they are required to deal with larger amounts of data. Therefore, a compact representation of 3D faces is often crucial for a better manipulation of data, in the context of 3D face applications such as smart card identity verification systems. We propose a new compact 3D representation by focusing on the most significant parts of the face. We introduce a generative learning approach by adapting Hidden Markov Models (HMM) to work on 3D meshes. The geometry of local area around face fiducial points is modeled by training HMMs which provide a robust pose invariant point signature. Such description allows the matching by comparing the signature of corresponding points in a maximum-likelihood principle. We show that our descriptor is robust for recognizing expressions and performs faster than the current ICP-based 3D face recognition systems by maintaining a satisfactory recognition rate. Preliminary results on a subset of the FRGC 2.0 dataset are reported by considering subjects under different expressions.

Published in:

Computer Vision and Pattern Recognition Workshops, 2008. CVPRW '08. IEEE Computer Society Conference on

Date of Conference:

23-28 June 2008