By Topic

3D Spatio-Temporal face recognition using dynamic range model sequences

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yi Sun ; Dept. of Comput. Sci., State Univ. of New York at Binghamton, Binghamton, NY ; Lijun Yin

Research on 3D face recognition has been intensified in recent years. However, most research has focused on the 3D static data analysis. In this paper, we investigate the face recognition problem using dynamic 3D face model sequences. Based on our newly created 3D dynamic face database, we propose to use a spatio-temporal hidden Markov model (HMM) which incorporates 3D surface feature characterization to learn the spatial and temporal information of faces. The advantage of using 3D dynamic data for face recognition has been evaluated by comparing our approach to three conventional approaches: 2D video based temporal HMM model, conventional 2D-texture based approach (e.g., Gabor wavelet based approach), and static 3D-model-based approaches.

Published in:

Computer Vision and Pattern Recognition Workshops, 2008. CVPRW '08. IEEE Computer Society Conference on

Date of Conference:

23-28 June 2008