By Topic

Gender classification from hand shape

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Amayeh, G. ; Comput. Vision Lab., Univ. of Nevada, Reno, NV ; Bebis, G. ; Nicolescu, M.

Many social interactions and services today depend on gender. In this paper, we investigate the problem of gender classification from hand shape. Our work has been motivated by studies in anthropometry and psychology suggesting that it is possible to distinguish between male and female hands by considering certain geometric features. Our system segments the hand silhouette into six different parts corresponding to the palm and fingers. To represent the geometry of each part, we use region and boundary features based on Zernike moments and Fourier descriptors. For classification, we compute the distance of a given part from two different eigenspaces, one corresponding to the male class and the other corresponding to female class. We have experimented using each part of the hand separately as well as fusing information from different parts of the hand. Using a small database containing 20 males and 20 females, we report classification results close to 98% using score-level fusion and LDA.

Published in:

Computer Vision and Pattern Recognition Workshops, 2008. CVPRW '08. IEEE Computer Society Conference on

Date of Conference:

23-28 June 2008