By Topic

Fast and exact solution of Total Variation models on the GPU

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Pock, T. ; Inst. for Comput. Graphics & Vision, Graz Univ. of Technol., Graz ; Unger, M. ; Cremers, D. ; Bischof, H.

This paper discusses fast and accurate methods to solve total variation (TV) models on the graphics processing unit (GPU). We review two prominent models incorporating TV regularization and present different algorithms to solve these models. We mainly concentrate on variational techniques, i.e. algorithms which aim at solving the Euler Lagrange equations associated with the variational model. We then show that particularly these algorithms can be effectively accelerated by implementing them on parallel architectures such as GPUs. For comparison we chose a state-of-the-art method based on discrete optimization techniques. We then present the results of a rigorous performance evaluation including 2D and 3D problems. As a main result we show that the our GPU based algorithms clearly outperform discrete optimization techniques in both speed and maximum problem size.

Published in:

Computer Vision and Pattern Recognition Workshops, 2008. CVPRW '08. IEEE Computer Society Conference on

Date of Conference:

23-28 June 2008