By Topic

Face model fitting based on machine learning from multi-band images of facial components

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Matthias Wimmer ; Perceptual Computing Lab, Waseda University, Tokyo, Japan ; Christoph Mayer ; Freek Stulp ; Bernd Radig

Geometric models allow to determine semantic information about real-world objects. Model fitting algorithms need to find the best match between a parameterized model and a given image. This task inherently requires an objective function to estimate the error between a model parameterization and an image. The accuracy of this function directly influences the accuracy of the entire process of model fitting. Unfortunately, building these functions is a non-trivial task. Dedicated to the application of face model fitting, this paper proposes to consider a multi-band image representation that indicates the facial components, from which a large set of image features is computed. Since it is not possible to manually formulate an objective function that considers this large amount of features, we apply a Machine Learning framework to construct them. This automatic approach is capable of considering the large amount of features provided and yield highly accurate objective functions for face model fitting. Since the Machine Learning framework rejects non-relevant image features, we obtain high performance runtime characteristics as well.

Published in:

Computer Vision and Pattern Recognition Workshops, 2008. CVPRW '08. IEEE Computer Society Conference on

Date of Conference:

23-28 June 2008