By Topic

Real-time human detection in urban scenes: Local descriptors and classifiers selection with AdaBoost-like algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Begard, J. ; LIST, CEA, Gif-sur-Yvette ; Allezard, N. ; Sayd, P.

This paper deals with the study of various implementations of the AdaBoost algorithm in order to address the issue of real-time pedestrian detection in images. We use gradient-based local descriptors and we combine them to form strong classifiers organized in a cascaded detector. We compare the original AdaBoost algorithm with two other boosting algorithms we developed. One optimizes the use of each selected descriptor to minimize the operations done in the image (method 1), leading to an acceleration of the detection process without any loss in detection performances. The second algorithm (method 2) improves the selection of the descriptors by associating to each of them a more powerful weak-learner - a decision tree built from the components of the whole descriptor - and by evaluating them locally. We compare the results of these three learning algorithms on a reference database of color images and we then introduce our preliminary results on the adaptation of this detector on infrared vision. Our methods give better detection rates and faster processing than the original boosting algorithm and also provide interesting results for further studies.

Published in:

Computer Vision and Pattern Recognition Workshops, 2008. CVPRW '08. IEEE Computer Society Conference on

Date of Conference:

23-28 June 2008