By Topic

Discovery of social relationships in consumer photo collections using Markov Logic

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Singla, P. ; Univ. of Washington, Washington, DC ; Kautz, H. ; Jiebo Luo ; Gallagher, A.

We identify the social relationships between individuals in consumer photos. Consumer photos generally do not contain a random gathering of strangers but rather groups of friends and families. Detecting and identifying these relationships are important steps towards understanding consumer image collections. Similar to the approach that a human might use, we use a rule-based system to quantify the domain knowledge (e.g. children tend to be photographed more often than adults; parents tend to appear with their kids). The weight of each rule reflects its importance in the overall prediction model. Learning and inference are based on a sound mathematical formulation using the theory developed in the area of statistical relational models. In particular, we use the language called Markov Logic [14]. We evaluate our model using cross validation on a set of about 4500 photos collected from 13 different users. Our experiments show the potential of our approach by improving the accuracy (as well as other statistical measures) over a set of two different relationship prediction tasks when compared with different baselines. We conclude with directions for future work.

Published in:

Computer Vision and Pattern Recognition Workshops, 2008. CVPRW '08. IEEE Computer Society Conference on

Date of Conference:

23-28 June 2008