By Topic

Integration of multiple contextual information for image segmentation using a Bayesian Network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lei Zhang ; Rensselaer Polytechnic Institute, 110 8th St., Troy, NY 12180 USA ; Qiang Ji

We propose a Bayesian network (BN) model to integrate multiple contextual information and the image measurements for image segmentation. The BN model systematically encodes the contextual relationships between regions, edges and vertices, as well as their image measurements with uncertainties. It allows a principled probabilistic inference to be performed so that image segmentation can be achieved through a most probable explanation (MPE) inference in the BN model. We have achieved encouraging results on the horse images from the Weizmann dataset. We have also demonstrated the possible ways to extend the BN model so as to incorporate other contextual information such as the global object shape and human intervention for improving image segmentation. Human intervention is encoded as new evidence in the BN model. Its impact is propagated through belief propagation to update the states of the whole model. From the updated BN model, new image segmentation is produced.

Published in:

Computer Vision and Pattern Recognition Workshops, 2008. CVPRW '08. IEEE Computer Society Conference on

Date of Conference:

23-28 June 2008