By Topic

Robust detection of semantically equivalent visually dissimilar objects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Goh, T. ; San Francisco State Univ., San Francisco, CA ; West, R. ; Okada, K.

We propose a novel and robust detection of semantically equivalent but visually dissimilar object parts with the presence of geometric domain variations. The presented algorithms follow a part-based object learning and recognition framework proposed by Epshtein and Ullman. This approach characterizes the location of a visually dissimilar object (i.e., root fragment) as a function of its relative geometrical configuration to a set of local context patches (i.e., context fragments). This work extends the original detection algorithm for handling more realistic geometric domain variation by using robust candidate generation, exploiting geometric invariances of a pair of similar polygons, as well as SIFT-based context descriptors. An entropic feature selection is also integrated in order to improve its performance. Furthermore, robust voting in a maximum density framework is realized by variable bandwidth mean shift, allowing better root detection performance with the presence of significant errors in detecting corresponding context fragments. We evaluate the proposed solution for the task of detecting various facial parts using FERET database. Our experimental results demonstrate the advantage of our solution by indicating significant improvement of detection performance and robustness over the original system.

Published in:

Computer Vision and Pattern Recognition Workshops, 2008. CVPRW '08. IEEE Computer Society Conference on

Date of Conference:

23-28 June 2008