By Topic

3D priors for scene learning from a single view

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Rother, D. ; Minnesota Univ., Minneapolis, MN ; Patwardhan, K. ; Aganj, I. ; Sapiro, G.

A framework for scene learning from a single still video camera is presented in this work. In particular, the camera transformation and the direction of the shadows are learned using information extracted from pedestrians walking in the scene. The proposed approach poses the scene learning estimation as a likelihood maximization problem, efficiently solved via factorization and dynamic programming, and amenable to an online implementation. We introduce a 3D prior to model the pedestrianpsilas appearance from any viewpoint, and learn it using a standard off-the-shelf consumer video camera and the Radon transform. This 3D prior or ldquoappearance modelrdquo is used to quantify the agreement between the tentative parameters and the actual video observations, taking into account not only the pixels occupied by the pedestrian, but also those occupied by the his shadows and/or reflections. The presentation of the framework is complemented with an example of a casual video scene showing the importance of the learned 3D pedestrian prior and the accuracy of the proposed approach.

Published in:

Computer Vision and Pattern Recognition Workshops, 2008. CVPRW '08. IEEE Computer Society Conference on

Date of Conference:

23-28 June 2008