By Topic

A probabilistic representation of LiDAR range data for efficient 3D object detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yapo, T.C. ; Dept. of Electr., Comput., & Syst. Eng., Rensselaer Polytech. Inst., Troy, NY ; Stewart, C.V. ; Radke, R.J.

We present a novel approach to 3D object detection in scenes scanned by LiDAR sensors, based on a probabilistic representation of free, occupied, and hidden space that extends the concept of occupancy grids from robot mapping algorithms. This scene representation naturally handles LiDAR sampling issues, can be used to fuse multiple LiDAR data sets, and captures the inherent uncertainty of the data due to occlusions and clutter. Using this model, we formulate a hypothesis testing methodology to determine the probability that given 3D objects are present in the scene. By propagating uncertainty in the original sample points, we are able to measure confidence in the detection results in a principled way. We demonstrate the approach in examples of detecting objects that are partially occluded by scene clutter such as camouflage netting.

Published in:

Computer Vision and Pattern Recognition Workshops, 2008. CVPRW '08. IEEE Computer Society Conference on

Date of Conference:

23-28 June 2008