By Topic

Multi-scale interest regions from unorganized point clouds

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Unnikrishnan, R. ; Carnegie Mellon Univ., Pittsburgh, PA ; Hebert, M.

Several computer vision algorithms rely on detecting a compact but representative set of interest regions and their associated descriptors from input data. When the input is in the form of an unorganized 3D point cloud, current practice is to compute shape descriptors either exhaustively or at randomly chosen locations using one or more preset neighborhood sizes. Such a strategy ignores the relative variation in the spatial extent of geometric structures and also risks introducing redundancy in the representation. This paper pursues multi-scale operators on point clouds that allow detection of interest regions whose locations as well as spatial extent are completely data-driven. The approach distinguishes itself from related work by operating directly in the input 3D space without assuming an available polygon mesh or resorting to an intermediate global 2D parameterization. Results are shown to demonstrate the utility and robustness of the proposed method.

Published in:

Computer Vision and Pattern Recognition Workshops, 2008. CVPRW '08. IEEE Computer Society Conference on

Date of Conference:

23-28 June 2008