By Topic

A kidney segmentation approach from DCE-MRI using level sets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Abdelmunim, H. ; Dept. of Comput. Sci., Houston Univ., Houston, TX ; Farag, A.A. ; Miller, W. ; AboelGhar, M.

Acute rejection is the most common reason of graft failure after kidney transplantation, and early detection is crucial to survive the transplanted kidney function. Automatic classification of normal and acute rejection transplants from dynamic contrast enhanced magnetic resonance imaging (DCEMRI), is of great importance. Kidney segmentation is the first step for such classification. The image intensity inside the kidney is used as an indication of failure/success. Differentiating between different cases cases is implemented by comparing subsequential kidney scans signals. So, this process is mainly dependent on segmentation. This paper introduces a new shape-based segmentation approach based on level sets. Training shapes are collected from different real data sets to represent the shape variations. Signed distance functions are used to represent these shapes. The methodology incorporates image and shape prior information in a variational framework. The shape registration is considered the backbone of the approach where more general transformations can be used to handle the process. We introduce a novel shape dissimilarity measure that enables the use of different (inhomogeneous) scales. The approach gives successful results compared with other techniques restricted to transformations with homogeneous scales. Results for segmenting kidney images will be illustrated and compared with other approaches to show the efficiency of the proposed technique.

Published in:

Computer Vision and Pattern Recognition Workshops, 2008. CVPRW '08. IEEE Computer Society Conference on

Date of Conference:

23-28 June 2008