Cart (Loading....) | Create Account
Close category search window

Manifold learning for 4D CT reconstruction of the lung

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Georg, M. ; Washington Univ. in St. Louis, St. Louis, MO ; Souvenir, R. ; Hope, A. ; Pless, R.

Computed tomography is used to create models of lung dynamics because it provides high contrast images of lung tissue. Creating 4D CT models which capture dynamics is complicated because clinical CT scanners capture data in slabs that comprise only a small part of the tissue. Commonly, creating 4D reconstruction requires stitching together different lung segments based on an external measure of lung volume. This paper presents a novel method for assembling 4D CT datasets using only the CT data. We use a manifold learning algorithm to parameterize each slab data with respect to the breathing cycle, and an alignment method to coordinate these parameterizations for different sections of the lung. Comparing this data driven parameterization with physiological measurements captured by a belt around the abdomen, we are able to generate slightly smoother reconstructions.

Published in:

Computer Vision and Pattern Recognition Workshops, 2008. CVPRW '08. IEEE Computer Society Conference on

Date of Conference:

23-28 June 2008

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.