By Topic

A large-to-fine-scale shape prior for probabilistic segmentations using a deformable m-rep

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Xiaoxiao Liu ; Medical Image Display & Analysis Group (MIDAG), University of North Carolina, Chapel Hill, 27599, USA ; Ja-Yeon Jeong ; Joshua H. Levy ; Rohit R. Saboo
more authors

Training a shape prior has been potent scheme for anatomical object segmentations, especially for images with noisy or weak intensity patterns. When the shape representation lives in a high dimensional space, principal component analysis is often used to calculate a low dimensional variation subspace from frequently limited number of training samples. However, the eigenmodes of the sub-space tend to keep the large-scale variation of the shape only, losing the detailed localized variability which is crucial to accurate segmentations. In this paper, we propose a large-to-fine-scale shape prior for probabilistic segmentation to enable local refinement, using a deformable medial representation, called the m-rep. Tests on the goodness of the shape prior are carried out on large simulated data sets of (a) 1000 deformed ellipsoids with mixed global deformations and local perturbation; (b) 500 simulated hippocampus models. The predictability of the shape priors are evaluated and compared by a squared correlations metric and the volume overlap measurement against different training sample sizes. The improved robustness achieved by the large-to-fine-scale strategy is demonstrated, especially for low sample size applications. Finally, posterior 3D segmentations of the bladder from CT images from multiple patients in day-to-day adaptive radiation therapy demonstrate that the local residual statistics introduced by this method improve the segmentation accuracy.

Published in:

Computer Vision and Pattern Recognition Workshops, 2008. CVPRW '08. IEEE Computer Society Conference on

Date of Conference:

23-28 June 2008