By Topic

Rotational flows for interpolation between sampled surfaces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Levy, J.H. ; Med. Image Display&Anal. Group (MIDAG), Univ. of North Carolina at Chapel Hill, Chapel Hill, NC ; Foskey, M. ; Pizer, S.M.

We introduce a locally defined shape-maintaining method for interpolating between corresponding oriented samples (vertices) from a pair of surfaces. We have applied this method to interpolate synthetic data sets in two and three dimensions and to interpolate medially represented shape models of anatomical objects in three dimensions. In the plane, each oriented vertex follows a circular arc as if it was rotating to its destination. In three dimensions, each oriented vertex moves along a helical path that combines in-plane rotation with translation along the axis of rotation. We show that our planar method provides shape-maintaining interpolations when the reference and target objects are similar. Moreover, the interpolations are size maintaining when the reference and target objects are congruent. In three dimensions, similar objects are interpolated by an affine transformation. We use measurements of the fractional anisotropy of such global affine transformations to demonstrate that our method is generally more-shape preserving than the alternative of interpolating vertices along linear paths irrespective of changes in orientation. In both two and three dimensions we have experimental evidence that when non-shape-preserving deformations are applied to template shapes, the interpolation tends to be visually satisfying with each intermediate object appearing to belong to the same class of objects as the end points.

Published in:

Computer Vision and Pattern Recognition Workshops, 2008. CVPRW '08. IEEE Computer Society Conference on

Date of Conference:

23-28 June 2008