By Topic

Image segmentation using an efficient rotationally invariant 3D region-based hidden Markov model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Huang, A. ; Dept. of ECE, UBC, Vancouver, BC ; Abugharbieh, R. ; Tam, R.

We present a novel three dimensional (3D) region-based hidden Markov model (rbHMM) for unsupervised image segmentation. Our contributions are twofold. First, our rbHMM employs a more efficient representation of the image than approaches based on a rectangular lattice or grid; thus, resulting in a faster optimization process. Second, our proposed novel tree-structured parameter estimation algorithm for the rbHMM provides a locally optimal data labeling that is invariant to object rotation. We demonstrate the advantages of our segmentation technique by validating on synthetic images of geometric shapes as well as both simulated and clinical magnetic resonance imaging (MRI) data of the brain. For the geometric shape data, we show that our method produces more accurate results in less time than a grid-based HMM framework using a similar optimization strategy. For the brain MRI data, our white and gray matter segmentation results in substantially greater accuracy than both block-based 3D HMM estimation and expectation-maximization hidden Markov random field (HMRF-EM) approaches.

Published in:

Computer Vision and Pattern Recognition Workshops, 2008. CVPRW '08. IEEE Computer Society Conference on

Date of Conference:

23-28 June 2008