By Topic

A multiple geometric deformable model framework for homeomorphic 3D medical image segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Xian Fan ; Johns Hopkins University, Baltimore MD 21218, USA ; Pierre-Louis Bazin ; John Bogovic ; Ying Bai
more authors

This paper presents a 3D segmentation framework for multiple objects or compartments embedded as level sets. Thanks to a compact representation of the level set functions of multiple objects, the framework guarantees no overlap and vacuum, and leads to a computationally efficient evolution scheme largely independent of the number of objects. Appropriate topology constraints ensure not only that the topology of each object remains the same, but that the relationship between objects is also maintained. The decomposition of objects makes the framework specifically attractive to the segmentation of related anatomical regions or the parcellation of an organ, where relationships must be maintained and different evolution forces are needed on different parts of the objects interface. Examples of 3D whole brain segmentation and thalamic parcellation demonstrate the potential of our method for such segmentation tasks.

Published in:

Computer Vision and Pattern Recognition Workshops, 2008. CVPRW '08. IEEE Computer Society Conference on

Date of Conference:

23-28 June 2008