Cart (Loading....) | Create Account
Close category search window
 

Variational shape detection in microscope images based on joint shape and image feature statistics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Fuchs, M. ; Innsbruck, Univ., Innsbruck ; Gerber, S.

This paper presents a novel variational formulation incorporating statistical knowledge to detect shapes in images. We propose to train an energy based on joint shape and feature statistics inferred from training data. Variational approaches to shape detection traditionally involve energies consisting of a feature term and a regularization term. The feature term forces the detected object to be optimal with respect to image properties such as contrast, pattern or edges whereas the regularization term stabilizes the shape of the object. Our trained energy does not rely on these two separate terms, hence avoids the non-trivial task of balancing them properly. This enables us to incorporate more complex image features while still relying on a moderate number of training samples. Cell detection in microscope images illustrates the capability of the proposed method to automatically adapt itself to different image features. We also introduce a nonlinear energy and exemplarily compare it to the linear approach.

Published in:

Computer Vision and Pattern Recognition Workshops, 2008. CVPRW '08. IEEE Computer Society Conference on

Date of Conference:

23-28 June 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.