By Topic

Circular generalized cylinder fitting for 3D reconstruction in endoscopic imaging based on MRF

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jin Zhou ; Dept. of Comput. Sci.&Eng., Arizona State Univ., Tempe, AZ ; Das, A. ; Feng Li ; Baoxin Li

Endoscopy has become an established procedure for the diagnosis and therapy of various gastrointestinal (GI) ailments, and has also emerged as a commonly-used technique for minimally-invasive surgery. Most existing endoscopes are monocular, with stereo-endoscopy facing practical difficulties, preventing the physicians/surgeons from having a desired, realistic 3D view. Traditional monocular 3D reconstruction approaches (e.g., structure from motion) face extraordinary challenges for this application due to issues including noisy data, lack of textures supporting robust feature matching, nonrigidity of the objects, and glare artifacts from the imaging process, etc. In this paper, we propose a method to automatically reconstruct 3D structure from a monocular endoscopic video. Our approach attempts to address the above challenges by incorporating a circular generalized cylinder (CGC) model in 3D reconstruction. The CGC model is decomposed as a series of 3D circles. To reconstruct this model, we formulate the problem as one of maximum a posteriori estimation within a Markov random field framework, so as to ensure the smoothness constraints of the CGC model and to support robust search for the optimal solution, which is achieved by a two-stage heuristic search scheme. Both simulated and real data experiments demonstrate the effectiveness of the proposed approach.

Published in:

Computer Vision and Pattern Recognition Workshops, 2008. CVPRW '08. IEEE Computer Society Conference on

Date of Conference:

23-28 June 2008