By Topic

Integrated segmentation and motion analysis of cardiac MR images using a subject-specific dynamical model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yun Zhu ; Departments of Biomedical Engineering and Diagnostic Radiology, Yale University, New Haven, CT 06520-8042, USA ; Xenophon Papademetris ; Albert J. Sinusas ; James S. Duncan

In this paper we propose an integrated cardiac segmentation and motion tracking algorithm. First, we present a subject-specific dynamical model (SSDM) that simultaneously handles inter-subject variability and temporal dynamics (intra-subject variability), such that it can progressively identify the subject vector associated with a new cardiac sequence, and use this subject vector to predict the subject-specific segmentation of the future frames based on the shapes observed in earlier frames. Second, we use the segmentation as a guide in selecting feature points with significant shape characteristics, and invoke the generalized robust point matching (G-RPM) strategy with boundary element method (BEM)-based regularization model to estimate physically realistic displacement field in a computationally efficient way. The integrated algorithm is formulated in a recursive Bayesian framework that sequentially segments cardiac images and estimates myocardial displacements. ldquoLeave-one-outrdquo validation on 32 sequences demonstrates that the segmentation results are improved when the SSDM is used, and the tracking results are much more accurate when the segmentation module is added.

Published in:

Computer Vision and Pattern Recognition Workshops, 2008. CVPRW '08. IEEE Computer Society Conference on

Date of Conference:

23-28 June 2008