Cart (Loading....) | Create Account
Close category search window

Algorithms for computing the group exponential of diffeomorphisms: Performance evaluation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bossa, M. ; GTC, Zaragoza, Univ., Zaragoza ; Zacur, E. ; Olmos, S.

In computational anatomy variability among medical images is encoded by a large deformation diffeomorphic mapping matching each instance with a template. The set of diffeomorphisms is usually endowed with a Riemannian manifold structure and parameterized by non-stationary velocity vector fields. An alternative parameterization based on stationary vector fields has been proposed, where paths of diffeomorphisms are the one-parameter subgroups, identified with the group exponential map. A log-Euclidean framework was proposed to compute statistics on finite dimensional Lie groups and later extended to diffeomorphisms. A fast algorithm based on the scaling and squaring (SS) method for the matrix exponential was applied to compute the exponential of diffeomorphisms. In this work we evaluate the performance of different approaches to compute the exponential in terms of accuracy and computational time. These approaches include forward Euler method, Taylor expansion, iterative composition, SS method, and a combination of interpolation and SS. In our results the SS method obtained the best performance trade-off, as it is accurate, fast and robust, but it has an intrinsic lower bound in accuracy. This lower bound can be partially overcome by oversampling the grid, at the expense of increased memory and time requirements. The Taylor expansion provided a fast alternative when spatial frequencies are small, and particularly for low ambient dimensions, but its convergence is not guaranteed in general.

Published in:

Computer Vision and Pattern Recognition Workshops, 2008. CVPRW '08. IEEE Computer Society Conference on

Date of Conference:

23-28 June 2008

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.