By Topic

Statistical shape modelling: How many modes should be retained?

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Lin Mei ; Dept. of Biosurgery & Surg. Technol., Imperial Coll. London, London ; Figl, M. ; Rueckert, D. ; Darzi, A.
more authors

Statistical shape modelling is a technique whereby the variation of shape across the population is modelled by principal component analysis (PCA) on a set of sample shape vectors. The number of principal modes retained in the model (PCA dimension) is often determined by simple rules, for example choosing those cover a percentage of total variance. We show that this rule is highly dependent on sample size. The principal modes retained should ideally correspond to genuine anatomical variation. In this paper, we propose a mathematical framework for analysing the source of PCA model error. The optimum PCA dimension is a pay-off between discarding structural variation (under-modelling) and including noise (over-modelling). We then propose a stopping rule that identifies the noise dominated modes using a t-test of the bootstrap stability between the real data and artificial Gaussian noise. We retain those modes that are not dominated by noise. We show that our method determines the correct PCA dimension for synthetic data, where conventional rules fail. Comparison between our rule and conventional rules are also performed on a series of real datasets. We provide a foundation for analysing rules that are used to determine the number of modes to retain and also allows the study of PCA sample sufficiency.

Published in:

Computer Vision and Pattern Recognition Workshops, 2008. CVPRW '08. IEEE Computer Society Conference on

Date of Conference:

23-28 June 2008