By Topic

Neighbor-constrained active contours without edges

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hongda Mao ; State Key Lab. of Modern Opt. Instrum., Zhejiang Univ., Hangzhou ; Huafeng Liu ; Pengcheng Shi

To achieve robustness against different images, a novel region-based geometric deformable model framework employing neighboring information constraints is proposed. The fundamental power of this strategy makes uses of the image information at the support domain around each point of interest, thus effectively enlarges the capture range of each point to have a better regional understanding of the information within its local neighborhood. In other words, we establish the Mumford-Shah energy functional on each image point with its local neighborhood in a way such that it is capable of providing sufficient information to define a desired segmentation which is robust against intensity inhomogeneity and noise impact. The resulting partial differential equation is solved numerically by the finite differences schemes on pixel-by-pixel domain. Experimental results on synthetic and real images demonstrate its superior performance.

Published in:

Computer Vision and Pattern Recognition Workshops, 2008. CVPRW '08. IEEE Computer Society Conference on

Date of Conference:

23-28 June 2008