By Topic

A stable optic-flow based method for tracking colonoscopy images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jianfei Liu ; Univ. of North Carolina at Charlotte, Charlotte, NC ; Subramanian, K. ; Yoo, T. ; Van Uitert, R.

In this paper, we focus on the robustness and stability of our algorithm to plot the position of an endoscopic camera (during a colonoscopy procedure) on the corresponding pre-operative CT scan of the patient. The colon has few topological landmarks, in contrast to bronchoscopy images, where a number of registration algorithms have taken advantage of features such as anatomical marks or bifurcations. Our method estimates the camera motion from the optic-flow computed from the information contained in the video stream. Optic-flow computation is notoriously susceptible to errors in estimating the motion field. Our method relies on the following features to counter this, (1) we use a small but reliable set of feature points (sparse optic-flow field) to determine the spatio-temporal scale at which to perform optic-flow computation in each frame of the sequence, (2) the chosen scales are used to compute a more accurate dense optic flow field, which is used to compute qualitative parameters relating to the main motion direction, and (3) the sparse optic-flow field and the main motion parameters are then combined to estimate the camera parameters. A mathematical analysis of our algorithm is presented to illustrate the stability of our method, as well as comparison to existing motion estimation algorithms. We present preliminary results of using this algorithm on both a virtual colonoscopy image sequence, as well as a colon phantom image sequence.

Published in:

Computer Vision and Pattern Recognition Workshops, 2008. CVPRW '08. IEEE Computer Society Conference on

Date of Conference:

23-28 June 2008