By Topic

Scalable classifiers for Internet vision tasks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tom Yeh ; MIT EECS & CSAIL, Cambridge, MA, USA ; John J. Lee ; Trevor Darrell

Object recognition systems designed for Internet applications typically need to adapt to userspsila needs in a flexible fashion and scale up to very large data sets. In this paper, we analyze the complexity of several multiclass SVM-based algorithms and highlight the computational bottleneck they suffer at test time: comparing the input image to every training image. We propose an algorithm that overcomes this bottleneck; it offers not only the efficiency of a simple nearest-neighbor classifier, by voting on class labels based on the k nearest neighbors quickly determined by a vocabulary tree, but also the recognition accuracy comparable to that of a complex SVM classifier, by incorporating SVM parameters into the voting scores incrementally accumulated from individual image features. Empirical results demonstrate that adjusting votes by relevant support vector weights can improve the recognition accuracy of a nearest-neighbor classifier without sacrificing speed. Compared to existing methods, our algorithm achieves a ten-fold speed increase while incurring an acceptable accuracy loss that can be easily offset by showing about two more labels in the result. The speed, scalability, and adaptability of our algorithm makes it suitable for Internet vision applications.

Published in:

Computer Vision and Pattern Recognition Workshops, 2008. CVPRW '08. IEEE Computer Society Conference on

Date of Conference:

23-28 June 2008