By Topic

Artificial neural network PI controlled superconducting magnetic energy storage, SMES for augmentation of power systems stability

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Hemeida, A.M. ; E.E. Dept, South Valley Univ., Aswan

This paper aimed to apply artificial neural network proportional, plus integral, PI controlled superconducting magnetic energy storage SMES to improve the transient stability of power systems. The PI controller parameters is firstly determined based on eigenvalue assignment approach. The artificial neural network, ANN is used to determine the optimum gains of the PI controller at different load values. The ANN is trained off line using Matlab software to obtain the optimum parameters of the PI controller. The speed deviation, Deltaomega and load angle deviation Deltadelta are used as input signal to the PI controller. The studied power system consists of single machine connected to an infinite bus via double transmission lines. The studied system is modeled by a set of nonlinear differential and algebraic equations and simulated by the Matlab software. The simulation results indicates the effect of the proposed ANN PI controlled SMES.

Published in:

Power System Conference, 2008. MEPCON 2008. 12th International Middle-East

Date of Conference:

12-15 March 2008