Cart (Loading....) | Create Account
Close category search window
 

Accurate Boundary Localization using Dynamic Programming on Snakes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mishra, A.K. ; VIP Res. Group, Waterloo Univ., Waterloo, ON ; Fieguth, P. ; Clausi, D.A.

The extraction of contours using deformable models, such as snakes, is a problem of great interest in computer vision, particular in areas of medical imaging and tracking. Snakes have been widely studied, and many methods are available. In most cases, the snake converges towards the optimal contour by minimizing a sum of internal (prior) and external (image measurement) energy terms. This approach is elegant, but frequently mis-converges in the presence of noise or complex contours. To address these limitations, a novel discrete snake is proposed which treats the two energy terms separately. Essentially, the proposed method is a deterministic iterative statistical data fusion approach, in which the visual boundaries of the object are extracted, ignoring any prior, employing a hidden Markov model (HMM) and Viterbi search, and then applying importance sampling to the boundary points, on which the shape prior is asserted. The proposed implementation is straightforward and achieves dramatic speed and accuracy improvement. Compared to four other published methods and across six different images (two original, four published), the proposed method is demonstrated to be, on average, 7 times faster with a 45 percent reduction in the mean square error. Only the proposed method was able to successfully segment the desired object in each test image.

Published in:

Computer and Robot Vision, 2008. CRV '08. Canadian Conference on

Date of Conference:

28-30 May 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.