By Topic

Decision Support for Alzheimer's Patients in Smart Homes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

Assistive technology in smart homes for elderly people with Alzheimer's disease is needed to support 'aging in place'. In this paper, we propose a probabilistic learning approach to characterise behavioural patterns for multi-inhabitants in smart homes. Decision support is then provided to monitor and assist patients to complete activities of daily living (ADL). Reasoning is based on the learned profiles and partially observed low-level sensors information. Data are stored in the proposed snow-flake schema based on homeML (an XML based schema for representation of information within smart homes). A laboratory has been developed for studying activities of 'making drinks' for multiple users. Evaluations of our learning and decision support approach are carried out on both real and simulated data. The potential of our approach to support assistive living and home-health monitoring of Alzheimer's patients is demonstrated.

Published in:

Computer-Based Medical Systems, 2008. CBMS '08. 21st IEEE International Symposium on

Date of Conference:

17-19 June 2008