By Topic

Gradient Vector Flow Field and Mass Region Extraction in Digital Mammograms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Fengmei Zou ; Dept. of Adv. Technol., Alcorn State Univ., Alcorn, MS ; Yufeng Zheng ; Zhengdong Zhou ; Agyepong, K.

Mass detection is one of the main computer-aided mammographic breast cancer detection techniques. Precisely selecting the regions that contain masses is an important step in mass segmentation using mammographic computer-aided detection. In this paper, an algorithm for extracting mass regions in digital mammograms is proposed, in which we use adaptive histogram equalization to enhance mammograms, use a gradient vector flow field to generate region boundaries, select N candidate locations according to the means and the standard deviations of intensities of the points with top brightness, use these points and the region boundaries to generate the convex hulls of the regions as the mass regions. 161 down-sampled mammogram images from the Digital Database for Screening Mammography project were test, and a detection rate of 82.6% is obtained. The experimental results indicated that the method is efficient and robust.

Published in:

Computer-Based Medical Systems, 2008. CBMS '08. 21st IEEE International Symposium on

Date of Conference:

17-19 June 2008