By Topic

Designing a Dynamic Bayesian Network for Modeling Students' Learning Styles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Carmona, C. ; Dept. de Lenguajes y Cienc. de la Comput., Univ. de Malaga, Malaga ; Castillo, G. ; Millan, E.

When using learning object repositories, it is interesting to have mechanisms to select the more adequate objects for each student. For this kind of adaptation, it is important to have sound models to estimate the relevant features. In this paper we present a student model to account for learning styles, based on the model defined by Felder and Sylverman and implemented using dynamic Bayesian networks. The model is initialized according to the results obtained by the student in the index of learning styles questionnaire, and then fine-tuned during the course of the interaction using the Bayesian model, The model is then used to classify objects in the repository as appropriate or not for a particular student.

Published in:

Advanced Learning Technologies, 2008. ICALT '08. Eighth IEEE International Conference on

Date of Conference:

1-5 July 2008