We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

An overview of the SPHINX speech recognition system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lee, K.-F. ; Sch. of Comput. Sci., Carnegie Mellon Univ., Pittsburgh, PA, USA ; Hon, H.-W. ; Reddy, R.

A description is given of SPHINX, a system that demonstrates the feasibility of accurate, large-vocabulary, speaker-independent, continuous speech recognition. SPHINX is based on discrete hidden Markov models (HMMs) with LPC- (linear-predictive-coding) derived parameters. To provide speaker independence, knowledge was added to these HMMs in several ways: multiple codebooks of fixed-width parameters, and an enhanced recognizer with carefully designed models and word-duration modeling. To deal with coarticulation in continuous speech, yet still adequately represent a large vocabulary, two new subword speech units are introduced: function-word-dependent phone models and generalized triphone models. With grammars of perplexity 997, 60, and 20, SPHINX attained word accuracies of 71, 94, and 96%, respectively, on a 997-word task

Published in:

Acoustics, Speech and Signal Processing, IEEE Transactions on  (Volume:38 ,  Issue: 1 )