By Topic

Feedback-Linearization-Based Neural Adaptive Control for Unknown Nonaffine Nonlinear Discrete-Time Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

A new feedback-linearization-based neural network (NN) adaptive control is proposed for unknown nonaffine nonlinear discrete-time systems. An equivalent model in afflne-like form is first derived for the original nonaffine discrete-time systems as feedback linearization methods cannot be implemented for such systems. Then, feedback linearization adaptive control is implemented based on the affine-like equivalent model identified with neural networks. Pretraining is not required and the weights of the neural networks used in adaptive control are directly updated online based on the input-output measurement. The dead-zone technique is used to remove the requirement of persistence excitation during the adaptation. With the proposed neural network adaptive control, stability and performance of the closed-loop system are rigorously established. Illustrated examples are provided to validate the theoretical findings.

Published in:

Neural Networks, IEEE Transactions on  (Volume:19 ,  Issue: 9 )