By Topic

Providing entertainment by content-based filtering and semantic reasoning in intelligent recommender systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Blanco-Fernandez, Y. ; Dept. of Telematics Eng., Vigo Univ., Vigo ; Pazos-arias, J. ; Gil-Solla, A. ; Ramos-Cabrer, M.
more authors

Recommender systems arose in view of the information overload present in numerous domains. The so-called content-based recommenders offer products similar to those the users liked in the past. However, due to the use of syntactic similarity metrics, these systems elaborate overspecialized recommendations including products very similar to those the user already knows. In this paper, we present a strategy that overcomes overspecialization by applying reasoning techniques borrowed from the semantic Web. Thanks to the reasoning, our strategy discovers a huge amount of knowledge about the user's preferences, and compares them with available products in a more flexible way, beyond the conventional syntactic metrics. Our reasoning-based strategy has been implemented in a recommender system for interactive digital television, with which we checked that the proposed technique offers accurate enhanced suggestions that would go unnoticed in the traditional approaches.

Published in:

Consumer Electronics, IEEE Transactions on  (Volume:54 ,  Issue: 2 )