By Topic

An efficient and advanced space-management technique for flash memory using reallocation blocks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Se Jin Kwon ; Inf. & Comput. Eng., Ajou Univ., Suwon ; Tae-Sun Chung

Flash memory offers attractive features, such as non-volatile, shock resistance, fast access, and low power consumption for data storage. However, it has one main drawback of requiring an erase before updating the contents. Furthermore, flash memory can only be erased limited number of times. To overcome limitations, flash memory needs a software layer called flash translation layer (FTL). The basic function of FTL is to translate the logical address from the file system like file allocation table (FAT) to the physical address in flash memory. In this paper, a new FTL algorithm called an efficient and advanced space-management technique (EAST) is proposed. EAST improves the performance by optimizing the number of log blocks, by applying the state transition, and by using reallocation blocks. The results of experiments show that EAST outperforms FAST, which is an enhanced log block scheme, particularly when the usage of flash memory is not full.

Published in:

Consumer Electronics, IEEE Transactions on  (Volume:54 ,  Issue: 2 )