By Topic

Sensitivity of QUS parameters to controlled variations of bone strength assessed with a cellular model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Haiat, G. ; Centre Nat. de la Rech. Sci. (CNRS), Univ. Paris Diderot, Paris ; Padilla, F. ; Laugier, P.

The physical principles underlying quantitative ultrasound (QUS) measurements are not fully understood yet. Therefore, the translation of QUS results into bone strength remains elusive. In the present study, we derive the sensitivity of broadband ultrasonic attenuation (BUA) and speed of sound (SOS) to variations of bone strength. For this purpose, a mechanical cellular model is combined to a multiple regression resulting from the analysis of finite-difference time domain (FDTD) simulations. Specifically, we investigate how QUS variables respond to a variation in strength of 10%, realized either by a change in material properties or a change in bone volume fraction (BV/TV). The results show that except when BV/TV is high, the variations of BUA in response to a variation in strength realized by a pure change of BV/TV exceeds the technique imprecision and thus can be detected. When the variation of strength is realized by changes of compressive or shear stiffness, the response in QUS properties is dominated by the variation in C11, whereas changes in C44, remaining below the precision error, cannot be detected. The interpretation of these data, however, is not straightforward due to sparse description of elastic properties at the tissue level. To overcome the limitation of the cellular model, more realistic computational models such as micro- finite element analysis have to be considered.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:55 ,  Issue: 7 )