Cart (Loading....) | Create Account
Close category search window

Ultrasonic scattering from cancellous bone: A review

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Wear, K.A. ; Center for Devices & Radiol. Health, U.S. Food & Drug Adm., Silver Spring, MD

This paper reviews theory, measurements, and computer simulations of scattering from cancellous bone reported by many laboratories. Three theoretical models (binary mixture, Faran cylinder, and weak scattering) for scattering from cancellous bone have demonstrated some consistency with measurements of backscatter. Backscatter is moderately correlated with bone mineral density in human calcaneus in vitro (r2 = 0.66 - 0.68). Backscatter varies approximately as frequency cubed and trabecular thickness cubed in human calcaneus and femur in vitro. Backscatter from human calcaneus and bovine tibia exhibits substantial anisotropy. So far, backscatter has demonstrated only modest clinical utility. Computer simulation models have helped to elucidate mechanisms underlying scattering from cancellous bones.

Published in:

Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on  (Volume:55 ,  Issue: 7 )

Date of Publication:

July 2008

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.