By Topic

An Extended Wavelet Spectrum for Bearing Fault Diagnostics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jie Liu ; Dept. of Mech. & Mechatron. Eng., Univ. of Waterloo, Waterloo, ON ; Wilson Wang ; Farid Golnaraghi

Rolling-element bearings are widely used in various mechanical and electrical systems. A reliable online bearing fault-diagnostic technique is critically needed to prevent the system's performance degradation and malfunction. In this paper, an extended wavelet spectrum analysis technique is proposed for a more positive assessment of bearing health conditions. Two strategies have been suggested for different wavelet function implementation. Two statistical indexes are proposed to quantify the resulting wavelet (coefficient) functions. Based on the information provided by these indexes, the wavelet functions can be deployed more effectively over the designated frequency bands. An extended Shannon function is proposed to synthesize the wavelet coefficients over selected bandwidths to enhance feature characteristics. An averaged autocorrelation power spectrum is adopted to highlight bearing characteristics. The viability of the developed technique is verified by online experimental tests corresponding to different bearing conditions.

Published in:

IEEE Transactions on Instrumentation and Measurement  (Volume:57 ,  Issue: 12 )