Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

At-speed delay characterization for IC authentication and Trojan Horse detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jie Li ; Charles L. Brown Dept. of Electr. & Comput. Eng., Virginia Univ., Charlottesville, VA ; Lach, J.

New attacker scenarios involving integrated circuits (ICs) are emerging that pose a tremendous threat to national security. Concerns about overseas fabrication facilities and the protection of deployed ICs have given rise to methods for IC authentication (ensuring that an IC being used in a system has not been altered, replaced, or spoofed) and hardware Trojan Horse (HTH) detection (ensuring that an IC fabricated in a nonsecure facility contains the desired functionality and nothing more), but significant additional work is required to quell these treats. This paper discusses how a technique for precisely measuring the combinational delay of an arbitrarily large number of register-to-register paths internal to the functional portion of the IC can be used to provide the desired authentication and design alteration (including HTH implantation) detection. This low-cost delay measurement technique does not affect the main IC functionality and can be performed at-speed at both test-time and run-time.

Published in:

Hardware-Oriented Security and Trust, 2008. HOST 2008. IEEE International Workshop on

Date of Conference:

9-9 June 2008