By Topic

Impact of IC wafer fab and assembly fab processes on package stress induced product reliability issues - an insight into the package stress relief design rules by simulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)

In this work the impact of the layout of the top metal of the integrated circuit (IC) and the most relevant process and material parameters of IC wafer fab and assembly fab on package stress induced damages to the ICs during temperature cycling is studied by means of thermo-mechanical simulations with experimental verifications. Besides die size, the materials for passivation, silicon thickness, molding compound properties, the cohesion between the molding compound and the die surface, and lead frame yield stress, all are found to significantly influence the risk of damages or failures on the IC surface. The results suggest a more complete package stress relief design rule, pointing to a systematic approach to eliminate or suppress the package stress induced damages to the IC and consequently a possibly more efficient use of the silicon area in IC design.

Published in:

Reliability Physics Symposium, 2008. IRPS 2008. IEEE International

Date of Conference:

April 27 2008-May 1 2008