By Topic

Model Predictive Control for Tactical Decision-Making in Semiconductor Manufacturing Supply Chain Management

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wenlin Wang ; Dept. of Chem. & Mater. Eng., Arizona State Univ., Tempe, AZ ; Rivera, D.E.

Supply chain management (SCM) in semiconductor manufacturing poses significant challenges that arise from the presence of long throughput times, unique constraints, and stochasticity in throughput time, yield, and customer demand. To address these concerns, a model predictive control (MPC) algorithm is developed which relies on a control-oriented formulation to generate daily decisions on starts of factories. A multiple-degree-of-freedom observer formulated for ease of tuning is implemented to achieve robustness and performance in the presence of nonlinearity and stochasticity in both supply and demand. The control algorithm is configured to meet the requirements of meeting customer demand (both forecasted and unforecasted), and track inventory and starts targets provided by higher level decision policies. Unique features of semiconductor manufacturing, such as capacity limits, packaging, and product reconfiguration, are formally addressed by imposing different constraints related to starts and inventories. This functionality contrasts that of standard approaches to MPC and makes this controller suitable as a tactical decision tool for semiconductor manufacturing and similar forms of high-volume discrete-parts manufacturing problems. Two representative case studies are examined under diverse realistic conditions with this flexible formulation of MPC. It is demonstrated that system robustness, performance, and high levels of customer service are achieved with proper tuning of the filter gains and weights, as well as the presence of adequate capacity in the supply chain.

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:16 ,  Issue: 5 )