Cart (Loading....) | Create Account
Close category search window
 

Rate adaptation via link-layer feedback for goodput maximization over a time-varying channel

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Aggarwal, R. ; Dept. of ECE, Ohio State Univ., Columbus, OH ; Schniter, P. ; Koksal, C.E.

The variable nature of the wireless channel may cause the quality of service to be intolerable for certain applications. To combat channel variability, we consider rate adaptation at the physical layer. We build an adaptive communication system based on uncoded QAM in which the available information on the channel state is obtained using the mere packet-level ACK/NACK sequence. Our system chooses the constellation size that maximizes the expected packet level goodput for every single packet. Our simulations show that our system achieves a goodput reasonably close to the highest possible goodput achievable with full-feedback on Rayleigh-fading Markov channels.

Published in:

Information Sciences and Systems, 2008. CISS 2008. 42nd Annual Conference on

Date of Conference:

19-21 March 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.