By Topic

Applications of Ellipsoidal Approximations to Polyhedral Sets in Power System Optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Saric, A.T. ; Coll. of Eng., Northeastern Univ., Boston, MA ; Stanković, A.M.

The paper presents a computational method that approximates feasible sets specified by linear or convex inequalities. This numerically efficient approach to power system optimization is based on computational geometry of multidimensional ellipsoids and is potentially applicable to problems with high dimensions, as it builds on recent advances in convex optimization. In an important application, it provides ranges in which nodal (generator) injections can vary without violating operational constraints in security analysis. The model is applied to two important problems in deregulated power systems: optimal economic dispatch (OED) and calculation of locational marginal prices (LMPs) in a day-ahead power market. Optimization problem with convex (ellipsoid-based) constraints is solved by a linear matrix inequality (LMI)-based procedure. The method is verified on the benchmark example with 68 buses, 16 generators, and 86 lines.

Published in:

Power Systems, IEEE Transactions on  (Volume:23 ,  Issue: 3 )