By Topic

Gramian-Based Reduction Method Applied to Large Sparse Power System Descriptor Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Freitas, F.D. ; Dept. of Electr. Eng., Univ. of Brasilia, Brasilia ; Rommes, J. ; Martins, N.

This paper presents an efficient linear system reduction method that computes approximations to the controllability and observability gramians of large sparse power system descriptor models. The method exploits the fact that a Lyapunov equation solution can be decomposed into low-rank Choleski factors, which are determined by the alternating direction implicit (ADI) method. Advantages of the method are that it operates on the sparse descriptor matrices and does not require the computation of spectral projections onto deflating subspaces of finite eigenvalues, which are needed by other techniques applied to descriptor models. The gramians, which are never explicitly formed, are used to compute reduced-order state-space models for large-scale systems. Numerical results for small-signal stability power system descriptor models show that the new method is more efficient than other existing approaches.

Published in:

Power Systems, IEEE Transactions on  (Volume:23 ,  Issue: 3 )