System Maintenance:
There may be intermittent impact on performance while updates are in progress. We apologize for the inconvenience.
By Topic

Accurate Prediction of Magnetic Field and Magnetic Forces in Permanent Magnet Motors Using an Analytical Solution

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Liu, Z.J. ; Data Storage Inst., Singapore ; Li, J.T.

This paper presents an analytical model suitable for analyzing permanent magnet motors with slotted stator core. By including the effect of the interaction between the pole transitions and slot openings, the model is able to predict the airgap field and magnetic forces with high accuracy, which cannot be achieved using the previously available analytical methods. The results of electromagnetic forces, i.e., the cogging torque and unbalanced magnetic pull, computed analytically agree well with numerical simulations using the finite-element method. The model is used to analyze the magnetic forces developed in permanent magnet brushless motors when the design parameters vary in wide ranges. The model is useful in design and optimization of permanent magnet motors.

Published in:

Energy Conversion, IEEE Transactions on  (Volume:23 ,  Issue: 3 )