By Topic

Effect of Drift-Region Concentration on Hot-Carrier-Induced R_{\rm on} Degradation in nLDMOS Transistors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Chen, Jone F. ; Dept. of Electr. Eng., Nat. Cheng Kung Univ., Tainan ; Lee, J.R. ; Kuo-Ming Wu ; Huang, Tsung-Yi
more authors

In this letter, hot-carrier-induced on-resistance (Ron) degradation in lateral DMOS transistors with different n-type drift-drain (NDD) region concentration is investigated. Increasing NDD concentration results in greater bulk (Ib) and gate currents (Ig), but Ron degradation is improved. Technology computer-aided design simulations reveal that high NDD concentration increases impact-ionization rate in accumulation (related to Ib increase) and channel regions (related to Ig increase) but reduces impact-ionization rate in spacer region. Charge-pumping data confirm that hot-carrier-induced interface state created in the spacer region is reduced, leading to improved Ron degradation in high-NDD-concentration device.

Published in:

Electron Device Letters, IEEE  (Volume:29 ,  Issue: 7 )