By Topic

Along-track interferometry for ground moving target indication

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chapin, E. ; Jet Propulsion Lab., California Inst. of Technol., Pasadena, CA ; Chen, C.W.

Synthetic aperture radar (SAR) along-track interferometry (ATI) has been used extensively to measure ocean surface currents. Given its ability to measure small velocities (-10 cm/s) of relatively radar-dark water surfaces, there is great potential that this technique can be adapted for ground moving target indication (GMTI) applications, particularly as a method for detecting very slow targets with small radar cross-sections. Herein, we describe preliminary results from an ATI GMTI experiment. The SAR data described were collected by the dual-frequency NASA/JPL airborne radar in its standard dual-baseline ATI mode. The radar system imaged a variety of control targets including a pickup truck, sport utility vehicles, passenger cars, a bicycle, and pedestrians over multiple flight passes. The control targets had horizontal velocities of less than 5 m/s. The cross-sections of the targets were not purposely enhanced, although the targets' reflectivities may have been affected by the existence of the GPS equipment used to record the targets' positions. Single-look and multiple-look interferograms processed to the full azimuth resolution were analyzed. In the data processed to date, all of the targets were observed by visual inspection in at least one of the four combinations of dual-frequency, dual-baseline interferometric data. This extremely promising result demonstrates the potential of ATI for GMTI applications.

Published in:

Aerospace and Electronic Systems Magazine, IEEE  (Volume:23 ,  Issue: 6 )